3.12.93 \(\int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [1193]

3.12.93.1 Optimal result
3.12.93.2 Mathematica [C] (warning: unable to verify)
3.12.93.3 Rubi [A] (verified)
3.12.93.4 Maple [B] (verified)
3.12.93.5 Fricas [C] (verification not implemented)
3.12.93.6 Sympy [F]
3.12.93.7 Maxima [F(-1)]
3.12.93.8 Giac [F]
3.12.93.9 Mupad [B] (verification not implemented)

3.12.93.1 Optimal result

Integrand size = 41, antiderivative size = 177 \[ \int \frac {(a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a (5 A+3 (B+C)) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (7 A+7 B+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a (7 A+7 B+5 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (5 A+3 (B+C)) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

output
-2/5*a*(5*A+3*B+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip 
ticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*a*(7*A+7*B+5*C)*(cos(1/2*d*x+1/2*c 
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/7* 
a*C*sin(d*x+c)/d/cos(d*x+c)^(7/2)+2/5*a*(B+C)*sin(d*x+c)/d/cos(d*x+c)^(5/2 
)+2/21*a*(7*A+7*B+5*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5*a*(5*A+3*B+3*C)*s 
in(d*x+c)/d/cos(d*x+c)^(1/2)
 
3.12.93.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.69 (sec) , antiderivative size = 1284, normalized size of antiderivative = 7.25 \[ \int \frac {(a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx =\text {Too large to display} \]

input
Integrate[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/C 
os[c + d*x]^(3/2),x]
 
output
a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*(((5*A + 3*B 
 + 3*C)*Csc[c]*Sec[c])/(5*d) + (C*Sec[c]*Sec[c + d*x]^4*Sin[d*x])/(7*d) + 
(Sec[c]*Sec[c + d*x]^3*(5*C*Sin[c] + 7*B*Sin[d*x] + 7*C*Sin[d*x]))/(35*d) 
+ (Sec[c]*Sec[c + d*x]^2*(21*B*Sin[c] + 21*C*Sin[c] + 35*A*Sin[d*x] + 35*B 
*Sin[d*x] + 25*C*Sin[d*x]))/(105*d) + (Sec[c]*Sec[c + d*x]*(35*A*Sin[c] + 
35*B*Sin[c] + 25*C*Sin[c] + 105*A*Sin[d*x] + 63*B*Sin[d*x] + 63*C*Sin[d*x] 
))/(105*d)) - (A*(1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, { 
5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[C 
ot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[ 
c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*S 
qrt[1 + Cot[c]^2]) - (B*(1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 
1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - A 
rcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^ 
2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]]) 
/(3*d*Sqrt[1 + Cot[c]^2]) - (5*C*(1 + Cos[c + d*x])*Csc[c]*HypergeometricP 
FQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Se 
c[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 
+ Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[C 
ot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) + (A*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 
 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan...
 
3.12.93.3 Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 168, normalized size of antiderivative = 0.95, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.366, Rules used = {3042, 4600, 3042, 3510, 27, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sec (c+d x)+a) \left (A+B \sec (c+d x)+C \sec (c+d x)^2\right )}{\cos (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {(a \cos (c+d x)+a) \left (A \cos ^2(c+d x)+B \cos (c+d x)+C\right )}{\cos ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3510

\(\displaystyle \frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}-\frac {2}{7} \int -\frac {7 a A \cos ^2(c+d x)+a (7 A+7 B+5 C) \cos (c+d x)+7 a (B+C)}{2 \cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {7 a A \cos ^2(c+d x)+a (7 A+7 B+5 C) \cos (c+d x)+7 a (B+C)}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {7 a A \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (7 A+7 B+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )+7 a (B+C)}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{7} \left (\frac {2}{5} \int \frac {5 a (7 A+7 B+5 C)+7 a (5 A+3 (B+C)) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x)}dx+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \frac {5 a (7 A+7 B+5 C)+7 a (5 A+3 (B+C)) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \frac {5 a (7 A+7 B+5 C)+7 a (5 A+3 (B+C)) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (7 A+7 B+5 C) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx+7 a (5 A+3 (B+C)) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (7 A+7 B+5 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+7 a (5 A+3 (B+C)) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (7 A+7 B+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 a (5 A+3 (B+C)) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (7 A+7 B+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 a (5 A+3 (B+C)) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (7 A+7 B+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 a (5 A+3 (B+C)) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (7 A+7 B+5 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 a (5 A+3 (B+C)) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {14 a (B+C) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

input
Int[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Cos[c + 
 d*x]^(3/2),x]
 
output
(2*a*C*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + ((14*a*(B + C)*Sin[c + d*x 
])/(5*d*Cos[c + d*x]^(5/2)) + (5*a*(7*A + 7*B + 5*C)*((2*EllipticF[(c + d* 
x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))) + 7*a*(5*A + 
3*(B + C))*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Co 
s[c + d*x]])))/5)/7
 

3.12.93.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3510
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)*Cos[ 
e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - S 
imp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*( 
m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b^2*d*(m 
 + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)) 
))*Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; F 
reeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 
 0] && LtQ[m, -1]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
3.12.93.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(821\) vs. \(2(211)=422\).

Time = 3.46 (sec) , antiderivative size = 822, normalized size of antiderivative = 4.64

method result size
default \(\text {Expression too large to display}\) \(822\)

input
int((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x,me 
thod=_RETURNVERBOSE)
 
output
-4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(1/2*A/sin( 
1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-Elliptic 
E(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d* 
x+1/2*c)^2)^(1/2))+1/2*C*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^ 
4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d* 
x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x 
+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^ 
2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF( 
cos(1/2*d*x+1/2*c),2^(1/2)))+(1/2*A+1/2*B)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*si 
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^ 
2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*s 
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2* 
c),2^(1/2)))+1/5*(1/2*B+1/2*C)/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^ 
6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*sin(1/2*d*x+1/2*c) 
^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2* 
d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24 
*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*EllipticE(cos(1/2*d*x+1/2*c),2 
^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin( 
1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*EllipticE(...
 
3.12.93.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.49 \[ \int \frac {(a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-5 i \, \sqrt {2} {\left (7 \, A + 7 \, B + 5 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (7 \, A + 7 \, B + 5 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 i \, \sqrt {2} {\left (5 \, A + 3 \, B + 3 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {2} {\left (5 \, A + 3 \, B + 3 \, C\right )} a \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (21 \, {\left (5 \, A + 3 \, B + 3 \, C\right )} a \cos \left (d x + c\right )^{3} + 5 \, {\left (7 \, A + 7 \, B + 5 \, C\right )} a \cos \left (d x + c\right )^{2} + 21 \, {\left (B + C\right )} a \cos \left (d x + c\right ) + 15 \, C a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d \cos \left (d x + c\right )^{4}} \]

input
integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2 
),x, algorithm="fricas")
 
output
1/105*(-5*I*sqrt(2)*(7*A + 7*B + 5*C)*a*cos(d*x + c)^4*weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*(7*A + 7*B + 5*C)*a*c 
os(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 
21*I*sqrt(2)*(5*A + 3*B + 3*C)*a*cos(d*x + c)^4*weierstrassZeta(-4, 0, wei 
erstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*I*sqrt(2)*(5* 
A + 3*B + 3*C)*a*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(21*(5*A + 3*B + 3*C)*a*cos(d* 
x + c)^3 + 5*(7*A + 7*B + 5*C)*a*cos(d*x + c)^2 + 21*(B + C)*a*cos(d*x + c 
) + 15*C*a)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4)
 
3.12.93.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=a \left (\int \frac {A}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {A \sec {\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B \sec ^{2}{\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {C \sec ^{3}{\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(3 
/2),x)
 
output
a*(Integral(A/cos(c + d*x)**(3/2), x) + Integral(A*sec(c + d*x)/cos(c + d* 
x)**(3/2), x) + Integral(B*sec(c + d*x)/cos(c + d*x)**(3/2), x) + Integral 
(B*sec(c + d*x)**2/cos(c + d*x)**(3/2), x) + Integral(C*sec(c + d*x)**2/co 
s(c + d*x)**(3/2), x) + Integral(C*sec(c + d*x)**3/cos(c + d*x)**(3/2), x) 
)
 
3.12.93.7 Maxima [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2 
),x, algorithm="maxima")
 
output
Timed out
 
3.12.93.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2 
),x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/cos 
(d*x + c)^(3/2), x)
 
3.12.93.9 Mupad [B] (verification not implemented)

Time = 20.70 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.26 \[ \int \frac {(a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {6\,C\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+30\,A\,a\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+10\,B\,a\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {30\,C\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+70\,A\,a\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+42\,B\,a\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{105\,d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}} \]

input
int(((a + a/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/cos(c + 
 d*x)^(3/2),x)
 
output
(6*C*a*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2) + 30*A*a* 
cos(c + d*x)^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2) + 
10*B*a*cos(c + d*x)*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^ 
2))/(15*d*cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (30*C*a*sin(c + 
 d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2) + 70*A*a*cos(c + d*x)^2 
*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2) + 42*B*a*cos(c + 
 d*x)*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(105*d*co 
s(c + d*x)^(7/2)*(1 - cos(c + d*x)^2)^(1/2))